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1 Introduction 
 
The volatility indices in recent years are arousing increasing interest among the various market players. 
Accurate modelling and forecasting of volatility is extremely crucial in financial markets. Although 
there exist different groups of volatility forecasting approaches, historical and implied volatility models 
are the most common exploited. Siriopoulos et al. (2019) test and document the information content of 
all publicly available implied volatility indices regarding both the realized volatility and the returns of 
the underlying asset. Their findings suggest that implied volatility includes information about future 
volatility beyond that contained in past volatility but, at the same time, they show that implied 
volatilities in commodities, bonds, currencies and volatility react differently to underlying price 
changes compared to equities. Implied volatility models bases on the Black-Scholes Model (BSM). The 
BSM is the standard model for valuing options. Volatility is one of not deterministic inputs available 
for immediate application in the formula, assumed constant over time and grounded on the assumption 
of normally distributed log returns. Iqbal (2018) shows a usual leptokurtic distribution in practice of the 
log returns of spot prices rather than a normal distribution, meaning that it exhibits excess kurtosis and 
more weight in the tails compared with the normal. In other terms, it is more likely that spot prices will 
remain unchanged than implied by the normal and, at the same time, that spot exhibits extreme moves 
than implied by the normal. The author shows also how this pricing feeds into the volatility smile. 
Most papers have focused principally on VIX Index (or CBOE Volatility Index) predictive power for 
future stock market returns. Giot (2005) proves that high (low) levels of the VIX correspond to positive 
(negative) future returns. Also Chow et al. (2014) also show the existence of a positive relationship 
between market returns and the VIX Index. For that concerns the evaluation of the VIX features, 
Fleming et al. (1995) were the first to analyze the persistence (long-memory behavior) of this index. 
Poorly developed is the literature on the main European volatility indices (i.e. VStoxx and VDax). 
Stanescu et al. (2013) focus on linkages between Eurostoxx50, S&P500, VSTOXX, VIX and 
VSTOXX futures series that can be used by equity investors to generate alpha and protect their 
investments during turbulent times. Fahling et al. (2019) show that the best forecasting model for the 
one month VDAX is a GARCHX(1,1) model and an ARX(1) model for the one year VDAX, while for 
the VSTOXX, an ARX model is the best fit under each scenario for both strategies. However, in the 
writing of this paper, no one published and working paper could be found which is studying the 
statistical features and linkage between the moments of the VStoxx index distribution over time with a 
fractal approach. 
Given this premise, the intention of this paper is a depth study of various aspects and facets. In 
particular, we tried to analyze: 

1. the statistical and structural characteristics of the volatility indices through the study of the 
distribution of returns over time. As in other analysis papers (see Bagato et al., 2018), this study 
starts from the analysis of the basic characteristics of the distribution of logarithmic returns of 
the European volatility index Vstoxx. So we started directly from the moments of distribution, 
an important starting point and basis on which to empirically describe some significant 
evidence; 

2. the confirmation of the anti-persistence and the mean reversion structurally present in the 
historical series through the study of the behavior of the Hurst exponent. The Hurst exponent is 
an index of fundamental importance in the analysis of the long-range dependence features of 
observable time-series (Resta, 2012).  After detecting the empirical evidence of the moments of 
distribution, we tried to observe the Hurst exponent in the historical series observed relating to 
the European index of equity volatility. In this analysis of the Hurst exponent, we have 
empirically observed in the historical series of logarithmic returns that the exponent structurally 
assumes values between 0 and 0.5. This was important evidence to confirm the anti-persistence 
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characteristic of the European volatility index Vstoxx. This value structurally lower than 0.5 of 
the Hurst exponent also confirmed the so-called mean reversion characteristic of the time series. 
In the literature, a Hurst exponent that structurally moves between 0 and 0.5 has led to the 
definition of volatility as "rough" (see Gatheral et al., 2014). This characteristic of anti-
persistence of the historical series of logarithmic returns also brings with it the adoption of 
Fractional Brownian Motion models (see Neuman et al., 2018) used in the logic of analysis and 
pricing when the Hurst exponent assumes values that are structurally different from 0.5, typical 
value of the classic Brownian Motion; 

3. the relationships that exist between the various moments of the distribution and the Hurst 
exponent. We have focused more on this last aspect even if our analysis is not exhaustive but 
opens the way for further analysis and in-depth analysis both in the field of risk management 
but also in terms of pricing of derivative instruments with non-linear payoffs linked to stock 
volatility indices. Nevertheless, we believe it is an additional useful tool for portfolio managers 
besides classical evaluation metrics (i.e. P/E, P/S, Dividend Yield, etc.) to signal a potential 
near-term market excess (increasing probability of cyclical market inversion point) when it is 
close to its interval extremes.  

 
2 Model and Data description 
 
In order to conduct the empirical analysis, we use daily VStoxx close prices for the interval 2000-20 
(5423 observations) transformed in log returns (5422 observations). Logarithmic transformation allows 
time-series stationarity and a closer to normal distribution. Data come from Bloomberg. Exhibit 1 
reports the Vstoxx log returns over the entire time horizon. 
 
Exhibit 1 – VStoxx log returns density distribution series from January 2000 to December 2019 

 
Source: authors’ calculations in Eviews 10 based on Bloomberg data. 
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Exhibit 2 reports the descriptive statistics of VStoxx log returns series for the entire period. 
Exhibit 2 - Descriptive statistics of data - January 2000 to December 2019 (5422 daily obs.) 
 

Statistics VStoxx Log Returns (%) 

Mean  
-0.005323 

 

Median  
-0.330572 

 

Maximum  
47.03052 

 

Minimum  
-43.47158 

 

Std. Dev.  
6.148458 

 

Skewness  
0.757710 

 

Kurtosis  
7.528615 

 

Source: authors’ calculations based on Bloomberg data. 
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Exhibit 3 – Fisher coefficient of kurtosis, Fisher-Pearson coefficient of skewness and Hurst exponent 
data derived from VStoxx log returns distribution from January 2000 to December 2019 

 
Source: authors’ calculations in Eviews 10 based on Bloomberg data. 
 

Exhibit 4 reports the descriptive statistics of Fisher coefficient of kurtosis, Fisher-Pearson coefficient of 
skewness and Hurst exponent data derived from VStoxx log returns distribution. 
 
Exhibit 4 - Descriptive statistics of Fisher coefficient of kurtosis, Fisher-Pearson coefficient of 
skewness and Hurst exponent - January 2000 to December 2019 (20 annual obs.) 
 

Statistics Fisher coefficient 
of kurtosis 

Fisher-Pearson 
coefficient of 

skewness 

Hurst Exponent 

Mean 2.941126 0.618522 0.380551 
Median 2.088555 0.582418 0.398457 

Maximum 10.59942 1.730151 0.491704 
Minimum 0.568985 -1.007011 0.158402 
Std. Dev. 2.559573 0.524438 0.088324 
Skewness 1.774520 -1.087760 -1.036014 
Kurtosis 5.544337 6.415787 3.595575 

Source: authors’ calculations based on Bloomberg data. 
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Let 𝐹𝐹𝐹𝐹𝑡𝑡 (Fisher coefficient of kurtosis at time t) and 𝐹𝐹𝐹𝐹𝑡𝑡 (Fisher-Pearson coefficient of skewness at time 
t) define as: 

𝐹𝐹𝐹𝐹𝑡𝑡 = 𝑚𝑚4𝑡𝑡
(𝑚𝑚2)2𝑡𝑡

− 3                        (1) 

𝐹𝐹𝐹𝐹𝑡𝑡 = 𝑚𝑚3𝑡𝑡
(𝑚𝑚2)3/2

𝑡𝑡
                         (2) 

 
where 𝑚𝑚2𝑡𝑡, 𝑚𝑚3𝑡𝑡 and 𝑚𝑚4𝑡𝑡 are respectively the second, the third and the fourth central moment calculated 
for the time interval t. 
The econometric model implemented develops in two sequential parts. The first part is based on the 
methodology suggested by Gonzalo and Granger (1995), each of which develops in two stages. The 
second and last part of the analysis is based on an OLS regression. Let us start with the description of the 
first part. 
In the first stage, we verify whether the short-term deviations of these two series converge towards the 
long-term equilibrium through a «cointegration analysis» by performing the Augmented Dickey-Fuller 
test. The existence of a linear combination between these two series, indeed, supports the presence of a 
long-term equilibrium adjustment process, even if the series deviate one from the other in the short-term. 
In this case, series are cointegrated. 
In the second stage, by using the first stage results1, we will try to verify which variable is able to 
embody move more rapidly than the other one. In other terms, this allows us to evaluate the potential 
existence of a leader and follower variables, as well as halfway situations. To do so, we set a bivariate 
Vector Error Correction Model (VECM), as suggested by Engle and Granger (1987). 
In order to perform the analysis, let us define the Hurst exponent variable. Following the intuition and 
the structure suggested by Sang et al. (2001), we estimates the Hurst Exponent using re-scaled range 
analysis (R/S) to provide some information about the statistical properties of European stocks volatility 
index time series. Re-scaled range analysis approach is robust to heavy tails (Barunik et al., 2010). Let 
us consider a VStoxx log return series 𝑅𝑅𝑅𝑅𝑛𝑛. Let τ denote the time span of the entire discrete series. The 
cumulative sum of the difference between return series and their mean, 𝑋𝑋(𝑛𝑛, 𝜏𝜏), is defined: 

𝑋𝑋(𝑛𝑛, 𝜏𝜏) = ∑ (𝑅𝑅𝑅𝑅𝑖𝑖 −
1
𝜏𝜏

𝑛𝑛
𝑖𝑖=1 ∑ 𝑅𝑅𝑅𝑅𝑛𝑛𝜏𝜏

𝑛𝑛=1 )                       (3) 

The range R denotes the difference between the maximum and minimum of 𝑋𝑋(𝑛𝑛, 𝜏𝜏), and S denotes 
standard deviation of the series. Therefore, R and S are defined as: 

𝑅𝑅(𝜏𝜏) = max𝑋𝑋(𝑛𝑛, 𝜏𝜏) −𝑚𝑚𝑚𝑚𝑛𝑛𝑋𝑋(𝑛𝑛, 𝜏𝜏)  for 𝑛𝑛 ∈ [1, 𝜏𝜏]           (4) 

𝐹𝐹(𝜏𝜏) =  �1
𝜏𝜏
∑ (𝑅𝑅𝑅𝑅𝑛𝑛 −

1
𝜏𝜏

𝜏𝜏
𝑛𝑛=1 ∑ 𝑅𝑅𝑅𝑅𝑛𝑛𝜏𝜏

𝑛𝑛=1 )2                       (5) 

R and S are functions of τ.  The R/S ratio is well described by the following empirical equation:  
𝑅𝑅
𝑆𝑆

= (𝑐𝑐𝜏𝜏)𝐻𝐻                                 (6) 

where c is a constant and H the Hurst exponent. The Hurst exponent is a classical self-similarity 
parameter that measures the long-range dependence in a time series and provides measure of long-term 
nonlinearity (Millen et al., 2003). 

 

                                                      
1 If the two series are not cointegrated then the VECM cannot be implemented because it is not more valid. 
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Exhibit 5 – Hurst exponent distribution from January 2000 to December 2019 

 
Source: authors’ calculations in Eviews 10 based on Bloomberg data. 
 

The formal specification of the model is defined by the following equations: 

𝛥𝛥𝛥𝛥𝑡𝑡 = 𝛽𝛽10 + ∑ 𝛽𝛽1𝑡𝑡𝛥𝛥𝛥𝛥𝑡𝑡−1𝑙𝑙
𝑡𝑡=1 + ∑ 𝛼𝛼1𝑡𝑡𝛥𝛥𝐹𝐹𝐹𝐹𝑡𝑡−1𝑙𝑙

𝑡𝑡=1 + 𝜆𝜆1𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 + 𝜀𝜀1𝑡𝑡 (7) 

  𝛥𝛥𝐹𝐹𝐹𝐹𝑡𝑡 = 𝛽𝛽20 + ∑ 𝛽𝛽2𝑡𝑡𝛥𝛥𝛥𝛥𝑡𝑡−1𝑙𝑙
𝑡𝑡=1 + ∑ 𝛼𝛼2𝑡𝑡𝛥𝛥𝐹𝐹𝐹𝐹𝑡𝑡−1𝑙𝑙

𝑡𝑡=1 + 𝜆𝜆2𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1 + 𝜀𝜀2𝑡𝑡 (8) 
where: 

• 𝛥𝛥𝛥𝛥𝑡𝑡  and 𝛥𝛥𝐹𝐹𝐹𝐹𝑡𝑡 are, respectively, the first differences for the Hurst exponent and the Fisher 
coefficient of kurtosis series; 

• β10 and β20 are, respectively, the constant terms of the equation (7) and (8); 

• 𝛥𝛥𝛥𝛥𝑡𝑡−1 and 𝛥𝛥𝐹𝐹𝐹𝐹𝑡𝑡−1 are, respectively,  the delayed  first  differences  for the Hurst exponent and 
the Fisher coefficient of kurtosis series; 

• l is the number of lags; 

• ECTt−1 is the Error Correction Term (ECT). It is defined as 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡−1  = 𝛥𝛥 𝑡𝑡−1  − 𝛼𝛼 − 𝛾𝛾𝐹𝐹𝐹𝐹 𝑡𝑡−1. 
In simple terms, it measures the deviations between the Hurst exponent and Fisher coefficient 
of kurtosis at time (t-1) with respect to the theoretical long period equilibrium. γ is the 
cointegrating coefficient and α is the intercept of the cointegrating term; 

• λ1 and λ2 are the adjustment coefficients. They describe the speed of adjustment back to the 
long period equilibrium, that is they measure the proportion of correction of the series 
deviations from the long-run relationship; 

  • ε1t and ε2t are, respectively, the error terms of the equation (7) and (8). 
 
It is intuitive that, for the aim of the analysis, the evaluation of the sign2 and the statistically 
significance of the adjustment coefficients (λ1 and λ2) allows us to know which market contributes to 

                                                      
2 We should expect the negative sign for λ1 and the positive sign for λ2 in order to favor the process of adjustment. 



8  

the adjustment process toward the long period equilibrium and which variable is able to move more 
rapidly than the other one. Hence, we should distinguish four cases: 

1. if λ1 is statistically significant and negative then it implicitly means that the Fisher coefficient 
of kurtosis adjusts more rapidly than the Hurst exponent. This means that the Hurst exponent 
is trying to restore the long-run equilibrium; 

2. if λ2 is statistically significant and positive then it implicitly means that the Hurst exponent 
moves more rapidly than the Fisher coefficient of kurtosis adjustment. This means that the 
Fisher coefficient of kurtosis adjustment is trying to restore the long-run equilibrium; 

3. if λ1 is statistically significant and negative and λ2 is statistically significant and positive then 
both variables contribute to the adjustment process towards the long-run equilibrium. In this 
case, by following Gonzalo-Granger (1995), in order to evaluate the effective contribution of 
each market in the adjustment process, we follow the concept of Market Share e (MS)3. 
According to how the MS formula has been defined, we distinguish between three sub cases: 

 
a) if MS ≈ 1 then the Hurst exponent is the leading variable and the Fisher coefficient of 

kurtosis is the lagging variable; 

b) if MS ≈ 0 then the Fisher coefficient of kurtosis is the leading variable and the Hurst 
exponent is the lagging variable; 

c) if MS ≈ 0.5 then both variables contribute in the same way; 

4. if only one of the adjustment coefficients is statistically significant and it present the correct 
sign then only that variable contributes to the adjustment process towards the equilibrium. 

This concludes the first part of the whole analysis. Let us introduce the second (and last) part. 

The log returns of spot prices shows a usual leptokurtic distribution in practice rather than a normal 
distribution (Iqbal, 2018), meaning that it exhibits excess kurtosis and more weight in the tails compared 
with the normal. The evolution of the excess of kurtosis (which represent a classical feature of the 
volatility distribution) variations, therefore, should be evaluated as the main determinant of the other 
fundamental aspect of the volatility distribution, that is the skewness progression. In this simple way, we 
can roughly estimate the “gamma effect”4 of the excess of kurtosis on the distribution skewness.  Let us 
define, as conclusive part of the whole analysis, the following OLS regression: 

𝛥𝛥𝐹𝐹𝐹𝐹𝑡𝑡 = 𝑐𝑐 + 𝛽𝛽𝛥𝛥𝐹𝐹𝐹𝐹𝑡𝑡 +  𝜀𝜀𝑡𝑡                         (9) 
 where: 

• 𝛥𝛥𝐹𝐹𝐹𝐹𝑡𝑡 is the first difference of the log variation of the Fisher-Pearson coefficient of 
skewness at time t; 

• 𝛥𝛥𝐹𝐹𝐹𝐹𝑡𝑡 is the first difference of the log variation of the Fisher coefficient of kurtosis at time 
t; 

• 𝑐𝑐 is the constant term; 
• 𝛽𝛽 is the regressor’s coefficient at time t; 
• 𝜀𝜀𝑡𝑡 is the error term at time t. 

                                                      
3 The formula suggested by Gonzalo and Granger (1995 ) is the following: 𝑀𝑀𝐹𝐹 = 𝜆𝜆2

𝜆𝜆2−𝜆𝜆1
 

4 This expression is just an analogy with the option instruments terminology. “Gamma”, indeed, is the rate of change in an 
option's delta per 1-point move in the underlying asset's price. 
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Data employed to run the above OLS regression have been extracted from annual distributions. 
In other terms, we have 16 annual observations (after adjustment5) for regression (9). The 
number of observations matter for inference, particularly in presence of non-normal distributed 
residuals. Jenkins et al. (2020) investigate on the process to clearly identify a minimum N 
(number of observations) needed for a study. Authors recommend a minimum N = 8 for a tight 
data pattern (i.e., very low variance) and a minimum N ≈ 25 to clearly match a model to the 
data pattern with high variance. Their findings support our OLS model performance. 
 
3 Results 
 
All preliminary and complementary tests on time series and further statistical tests validating the 
acceptance of OLS assumptions are not reported here. With regard to these latter tests, they confirm the 
presence of heteroskedasticity, no serial correlation and non-normal distributed residuals. To limit the 
problem of the heteroskedasticity, we calculate robust estimates by using the Huber-White procedure. To 
deal with non-normal distributed residuals, we follow Jenkins et al. (2020). 
As suggested by Liew (2004), we use Akaike's information criterion (AIC) as lag length selection 
criteria in determining the autoregressive lag length. Author shows its superiority than the other 
criteria under study in the case of small sample (60 observations and below). 
 
3.1 First Part - VECM: Hurst exponent and Fisher coefficient of kurtosis 
 
According to the first stage of the analysis, we evaluate the existence of cointegration between the two 
series through the Augmented Dickey-Fuller Test. The latter is reported in Exhibit 6. 

 
Exhibit 6 - Augmented Dickey-Fuller Test: period 2000-20 
 

Augmented Dickey-Fuller Test 

Residuals 

Period t-Statistic Prob.* 

2000-20 -4.142184 0.0056 
 
Source: authors’ own calculations in Eviews 10 based on Bloomberg data. 
 
As suggested by the test, the two series are cointegrated. Therefore, it is possible to realize the second 
stage of the analysis and estimate the VECM in order to assess which market contributes to the 
adjustment process toward the long-term equilibrium. The Akaike's information criterion suggests three 
lags as optimal lag length structure. The VECM estimation outputs are reported in the following 
Exhibit 7 (a) and Exhibit 7 (b). 
 
 
 
 
 

                                                      
5 The Fisher-Pearson coefficient of skewness is negative in 2017. 
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Exhibit 7 (a) - VECM: dependent variable ΔH - period 2000-20 
 

 Coefficient Std. Error t-Statistic Prob. 

β10 0.024691 0.022269 1.108756 0.2998 

β11 1.143627 0.881665 1.297121 0.2307 

β12 0.632662 0.582242 1.086597 0.3089 

β13 0.124346 0.260562 0.477221 0.6460 

α11 -0.088861 0.040669 -2.184990 0.0604 

α12 -0.051683 0.028474 -1.815051 0.1071 

α13 -0.012478 0.015004 -0.831633 0.4297 

λ1 -2.684862* 1.215836 -2.208245 0.0582 
 
Note: *** signals parameter significance at 1%. Source: authors’ calculations in Eviews 10 based on 
Bloomberg data.  
 
Exhibit 7 (b) - VECM: dependent variable ΔFK - period 2000-20 
 

 Coefficient Std. Error t-Statistic Prob. 

β20 0.070415 0.704636 0.099931 0.9229 

β21 -3.355230 20.28667 -0.165391 0.8727 

β22 4.119106 14.91121 0.276242 0.7894 

β23 0.726912 4.973915 0.146145 0.8874 

α21 -0.459197 1.034419 -0.443918 0.6689 

α22 -0.359277 0.764539 -0.469926 0.6510 

α23 -0.274273 0.391455 -0.700650 0.5034 

λ2 9.620120 29.54178 0.325645 0.7530 
 
Note: *** signals parameter significance at 1%. Source: authors’ calculations in Eviews 10 based on 
Bloomberg data.  
 
As we can see from Exhibit 7 (a) and Exhibit 7 (b), only λ1 is statistically significant and negative while 
λ2 is positive but not statistically significant. This means that the Fisher coefficient of kurtosis adjusts 
more rapidly than the Hurst exponent. This latter moves in the direction to restore the long-run 
equilibrium relationship. This proves that the Hurst exponent is a proxy measure of the degree of 
volatility mean reversion. 
 
3.2 Second part – OLS regression 
 
Exhibit 8 reports the augmented Dickey–Fuller test.  
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Exhibit 8 - Augmented Dickey-Fuller Test: period 2000-20 
 

Augmented Dickey-Fuller Test 
Residuals 

Period t-Statistic Prob.* 

2000-20 -8.755012 0.0000 
 
Source: authors’ own calculations in Eviews 10 based on Bloomberg data. 
 
The augmented Dickey–Fuller tests show that series is stationary. Exhibit 9 shows the estimated 
coefficients for the equation (9). 
 
Exhibit 9 – OLS regression: dependent variable ΔFS - period 2000-20 (16 annual obs.)6 
 

 Coefficient Std. Error t-Statistic Prob. 

c 0.009524 0.305148 0.031212 0.9755 

β 0.982585*** 0.198585 4.947931 0.0002 
 
Note: *** signals parameter significance at 1%. Source: authors’ calculations in Eviews 10 based on 
Bloomberg data.  

 
In this period, the estimated determination coefficient 𝑅𝑅2 is equal to 0.78 for the equation (9). The 
relationship between the Fisher-Pearson coefficient of skewness elasticity (dependent variable) and the 
Fisher coefficient of kurtosis elasticity (independent variable) is positive as expected, reporting a 
coefficient of about 0.98. This means that an increase/decrease of 1 percentage point of the regressor 
corresponds to an increase/decrease of approximately 98 basis points of the distribution skewness 
elasticity. This last result would enhance the underlying idea that, by making different hypothesis on the 
Hurst exponent within its habitat, it could further improve the simulation scenarios for the optimization 
of volatility option pricing procedure. In practical terms, however, these dynamics further confirm us 
how the Hurst exponent information can be used to evaluate potential near-term market excess in 
combination with the classical equity metrics (such as P/E, P/S, Dividend Yield, etc.).  
 
4 Economic discussion and Conclusions 

From an empirical point of view, this paper has achieved some important goals. Important 
confirmations have been found regarding the anti-persistence and mean-reversion characteristics of the 
historical price series of the volatility indices. These confirmations were the basis for empirically 
investigating the behavior of the European volatility indices. In particular, with the aid of statistical 
analysis it has been possible to ascertain the existence of relationships between the variables relating to 
persistence and the moments of distribution of the historical series relating to the main European 
volatility index (VStoxx). In this regard, it has been interesting to underline that the empirical results 
highlight causal links between the trend of anti-persistence and kurtosis on the one hand, the excess of 

                                                      
6 Let us restate that the Fisher-Pearson coefficient of skewness is negative in 2017. 
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kurtosis and skewness elasticity on the other. In fact, it has been possible to observe that, on the one 
hand, in the historical series relating to the most important European volatility index VStoxx, the 
variations of the Hurst Exponent somehow are linked to the variations of the kurtosis. On the other 
hand, in the observed time series, it has been gauged a strict relationship between the excess of kurtosis 
and skewness elasticities. While it could potentially improve the simulation on the volatility index 
distribution by making hypothesis on the Hurst Exponent within its “habitat” for the option pricing 
procedure, we found it is surely has an active role in signaling potential near-term market inversion 
point. This latter claim is mostly true if compared with information provided by the classical equity 
metrics (i.e. P/E, P/S, Dividend Yield, etc.). Exhibit 10 graphically proves what we are claiming. 

Exhibit 10 – Eurostoxx 50 and Hurst Exponent: historical chart since 2000s 

 

 

Source: macrotrends.net (Eurostoxx 50), authors’ calculations in Eviews 10 based on Bloomberg 
data (Hurst exponent). 
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How it is possible to observe from Exhibit 10, extreme high values of the Hurst exponent signaled 
important inversion points as in the early 2000s, mid-2000s and the local major top in 2017. Of course, 
it does not mean it represents the Holy Grail for anticipating major market top, but it can be useful to 
exploit information from implied volatility structure and put together with the classical fundamental 
and technical metrics to have a further confirmation about the market trend progression.   

The theoretical and empirical structure of this work does not have the ambition to be exhaustive but 
rather opens the door to various insights and themes of investigation in various directions. In fact, the 
evidence of the structural anti-persistence of the historical series of the returns of the VStoxx (as main 
European volatility index) and the links between the Hurst exponent and the moments of distribution 
(in particular, skewness and kurtosis) leaves room for further study and fields of investigation. These 
empirical evidences could enter at a certain level in the pricing models of derivatives (in particular in 
the pricing of options) related on equity volatility indices. 
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